- 浏览: 3942466 次
- 性别:
- 来自: 北京
最新评论
-
hinuliba:
...
字体背景颜色的高度修改 -
KANGOD:
最后的 -createDialog() 私有方法是怎么回事,没 ...
简单的实现listView中item多个控件以及点击事件 -
sswangqiao:
呵呵,呵呵
onActivityResult传值的使用 -
yumeiqiao:
感觉你所的不清楚 lstView.setOnTouchLi ...
listview中viewflipper的问题 -
lizhou828:
果然是大神啊!!!
Animation动画效果的实现
文章列表
我不喜欢在博客里回答问题,我只是希望博客干净一点,除非你做的效果和更好的方法可以跟帖
如果你要问我问题或者和我交流 请加我qq 3323297
谢谢 如果我能帮上 会帮你的,希望我们是朋友
也希望不要在跟帖了 谢谢,您也可以加入群 6884330,不过此群已满 请加入 75542406此群
转自知乎Matisse
package com.zhihu.matisse.internal.utils;
import android.annotation.TargetApi;
import android.content.ContentUris;
import android.content.Context;
import android.database.Cursor;
import android.net.Uri;
import android.os.Build;
import android.os.Environment;
import android.pro ...
如何用U盘安装 debian linux 系统
- 博客分类:
- 指导篇
首先下载Win32DiskImager-0.9.5-install、debian-8.4.0-amd64-DVD-1.iso 系统,iso不要放在u盘中,放在本地pC中 不然 用DiskImager,不成功。
其他的按照 https://jingyan.baidu.com/article/4b07be3cb16a4e48b280f361.html
http://blog.csdn.net/loyachen/article/details/51113118 这个链接亲测好使
gzip 抽取数据
- 博客分类:
- Tensorflow
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestrea ...
import argparse
import os
import sys
from six.moves import urllib
import tensorflow as tf
DATA_URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult'
TRAINING_FILE = 'adult.data'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_FILE = 'adult.test'
EVAL_URL = '%s/ ...
urllib 下载解析
- 博客分类:
- Tensorflow
import argparse
import os
import sys
import tarfile
from six.moves import urllib
import tensorflow as tf
DATA_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz'
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_dir', type=str, default='/tmp/cifar10_dat ...
TFRecordWriter
- 博客分类:
- Tensorflow
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert_to(dataset, name, directory):
"""Converts a dataset to TFRe ...
x, y = reader.ptb_producer(raw_data, batch_size, num_steps)
with self.test_session() as session:
coord = tf.train.Coordinator()
tf.train.start_queue_runners(session, coord=coord)
try:
xval, yval = session.run([x, y])
print(xval)
print(yval)
...
epoch_size = (batch_len - 1) // num_steps
assertion = tf.assert_positive(
epoch_size,
message="epoch_size == 0, decrease batch_size or num_steps")
with tf.control_dependencies([assertion]):
epoch_size = tf.identity(epoch_size, name="epoch_size") ...
def _read_words(filename):
with tf.gfile.GFile(filename, "r") as f:
if Py3:
return f.read().replace("\n", "<eos>").split()
else:
return f.read().decode("utf-8").replace("\n", "<eos>").split()
def ...
tf.identity 使用
- 博客分类:
- Tensorflow
https://stackoverflow.com/questions/34877523/in-tensorflow-what-is-tf-identity-used-for
After some stumbling I think I've noticed a single use case that fits all the examples I've seen. If there are other use cases, please elaborate with an example.
Use case:
Suppose you'd like to run an op ...
本文是全文复制 http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html
Introduction
In the previous post we explained the benefits of saving a large dataset in a single HDF5 file. In this post we will learn how to convert our data into the Tensorflow standard format, ...
n [71]: a1 = tf.constant([2,2], name="a1")
In [72]: a1
Out[72]: <tf.Tensor 'a1_5:0' shape=(2,) dtype=int32>
# add a new dimension
In [73]: a1_new = a1[tf.newaxis, :]
In [74]: a1_new
Out[74]: <tf.Tensor 'strided_slice_5:0' shape=(1, 2) dtype=int32>
# add one more ...
RNN 的shape [B, T, ...]其中B batch size ,T每次输入的长度,如句子单词的长度,剩下的维度取决于数据。
如果说single batch 里面所有的句子长度不同,但是RNN要求必须一样,所以必须填充,因此需要padding 他们,一般填充0.
如果仅有几个句子长度是1000,平均长度是20,如果全部填充到1000,那浪费的很多。因此需要batch padding。
如果设定batches size 为32,那么主要保持这次batch一样就可以了,下次patch可以和上次不一样,这样,只有个别的1ooo需要填充,节约了空间
可以使用 tf.train ...